Self-induced parametric amplification arising from nonlinear elastic coupling in a micromechanical resonating disk gyroscope
نویسندگان
چکیده
Parametric amplification, resulting from intentionally varying a parameter in a resonator at twice its resonant frequency, has been successfully employed to increase the sensitivity of many micro- and nano-scale sensors. Here, we introduce the concept of self-induced parametric amplification, which arises naturally from nonlinear elastic coupling between the degenerate vibration modes in a micromechanical disk-resonator, and is not externally applied. The device functions as a gyroscope wherein angular rotation is detected from Coriolis coupling of elastic vibration energy from a driven vibration mode into a second degenerate sensing mode. While nonlinear elasticity in silicon resonators is extremely weak, in this high quality-factor device, ppm-level nonlinear elastic effects result in an order-of-magnitude increase in the observed sensitivity to Coriolis force relative to linear theory. Perfect degeneracy of the primary and secondary vibration modes is achieved through electrostatic frequency tuning, which also enables the phase and frequency of the parametric coupling to be varied, and we show that the resulting phase and frequency dependence of the amplification follow the theory of parametric resonance. We expect that this phenomenon will be useful for both fundamental studies of dynamic systems with low dissipation and for increasing signal-to-noise ratio in practical applications such as gyroscopes.
منابع مشابه
Study of a Novel Isotropic Suspension Design for an Angular Gyroscope
This paper describes the analysis of a novel isotropic suspension designed for use in a Micro Electro Mechanical System (MEMS) z-axis angular gyroscope. The suspension, consisting of six concentric interconnected rings rigidly attached to an anchored frame, supports a resonating proof mass whose line of oscillation precesses in the presence of rotation induced Coriolis force. The paper demonstr...
متن کاملVibration analysis of coupled double-nanocomposite microplate-systems
The aim of the paper is to analyze electro-thermo nonlinear vibration of a double-piezoelectric composite microplate-system (DPCMPS) based on nonlocal piezoelasticity theory. The two microplates are assumed to be connected by an enclosing elastic medium which is simulated by Pasternak foundation. Both of smart composite microplates are made of poly-vinylidene fluoride (PVDF) reinforced by zigza...
متن کاملBandwidth Optimization Design of a Multi Degree of Freedom MEMS Gyroscope
A new robust multi-degree of freedom (multi-DOF) MEMS gyroscope is presented in this paper. The designed gyroscope has its bandwidth and amplification factor of the sense mode adjusted more easily than the previous reported multi-DOF MEMS gyroscopes. Besides, a novel spring system with very small coupling stiffness is proposed, which helps achieve a narrow bandwidth and a high amplification fac...
متن کاملNonlinear Flow-Induced Flutter Instability of Double CNTs Using Reddy Beam Theory
In this study, nonlocal nonlinear instability and the vibration of a double carbon nanotube (CNT) system have been investigated. The Visco-Pasternak model is used to simulate the elastic medium between nanotubes, on which the effect of the spring, shear and damping of the elastic medium is considered. Both of the CNTs convey a viscose fluid and a uniform longitudinal magnetic field is applied t...
متن کاملAnalysis of a solid state wave gyroscope with thin shell cylindrical resonator and calculation of its conversion factor
In this work the equations of motion of a Solid State Wave Gyroscope (SWG) with rotary thin cylindrical shell resonator is analyzed using the shell and plates elasticity theory. The gyroscope conversion factor found in this analytical study corresponds with the experimental results obtained and listed in the References. The function of the SWG to measure the angular velocity or the rotating ang...
متن کامل